Fun With the Scholar Package
A Little Dose of Imposter Syndrome for Your Morning
I saw the scholar
package has a new maintainer on Github, so thought I’d do a quick run through of what’s available in the vignette. I was happy to see some updates, I think this is one of those fun but useful packages for people to learn about. Plus, it lets everyone make a little study of their favorite little solipsistic research subjects.
Make sure you have the updated version of scholar
.
# install.package("scholar")
library(scholar)
Setup the basic information by changing up the id
argument, just visit Google Scholar, click on the “My Profile” link, and copy the last character string from the url (minus everything after the & sign). Paste that to the id
object below!
# Define the id for author
id <- 'g9lY5RUAAAAJ'
# Get profile and print name
l <- get_profile(id)
l$name
## [1] "Ian T. Adams"
# Get his citation history, i.e. citations to his work in a given year
get_citation_history(id)
## year cites
## 1 2018 5
## 2 2019 40
## 3 2020 73
## 4 2021 1
# Get his publications (a large data frame)
get_publications(id)
## title
## 1 Police body-worn cameras: Effects on officers’ burnout and perceived organizational support
## 2 Visibility is a trap: The ethics of police body-worn cameras and control
## 3 Is emotional labor easier in collectivist or individualist cultures? An east–west comparison
## 4 “That’s What the Money’s for”: Alienation and Emotional Labor in Public Service
## 5 Police body-worn cameras: development of the perceived intensity of monitoring scale
## 6 Assessing public perceptions of police use-of-force: Legal reasonableness and community standards
## 7 Understanding emotional labor at the cultural level
## 8 The rhetoric of de-policing: Evaluating open-ended survey responses from police officers with machine learning-based structural topic modeling
## 9 It's not depersonalization, It's emotional labor: Examining surface acting and use-of-force with evidence from the US
## 10 Hidden in plain sight
## 11 Hidden in Plain Sight: Contrasting Emotional Labor and Burnout in Civilian and Sworn Law Enforcement Employees
## 12 The Effect of Prosecutorial Actions on Deterrence: A County-Level Analysis
## 13 Contrasting Emotional Labor and Burnout in Civilian and Sworn Law Enforcement Personnel
## 14 Emotional Labor in Emergency Dispatch: Gauging Effects of Training Protocols
## 15 Andrew G. Ferguson, The Rise of Big Data Policing: Surveillance, Race, and the Future of Law Enforcement (New York, NY: NYU Press, 2017). 272 pp. $28.00 (hardcover), ISBN …
## 16 The Rhetoric of De-Policing
## 17 How Values Shape Program Perceptions: The “Organic Ethos” and Producers’ Assessments of US Organic Policy Impacts
## 18 Emotional labour in non-governmental organisations: narrative analysis and theory expansion
## 19 The UK
## 20 Trending Interconnectedness: The Value of Comparative Analysis
## 21 High-Stakes Administrative Discretion: What Drives Body-Worn Camera Activations?
## 22 International Journal of Law, Crime and Justice
## author
## 1 I Adams, S Mastracci
## 2 I Adams, S Mastracci
## 3 S Mastracci, I Adams
## 4 S Mastracci, I Adams
## 5 I Adams, S Mastracci
## 6 SM Mourtgos, IT Adams
## 7 SH Mastracci, IT Adams
## 8 SM Mourtgos, IT Adams
## 9 SH Mastracci, IT Adams
## 10 IT Adams, SH Mastracci
## 11 IT Adams, SH Mastracci
## 12 SM Mourtgos, IT Adams
## 13 IT Adams, SH Mastracci
## 14 SH Mastracci, IT Adams
## 15 IT Adams
## 16 SM Mourtgos, IT Adams
## 17 DP Carter, SL Mosier, IT Adams
## 18 SH Mastracci, IT Adams
## 19 SH Mastracci, IT Adams, N Kang
## 20 SH Mastracci, IT Adams
## 21 IT Adams, SM Mourtgos, SH Mastracci
## 22 SH Mastracci, IT Adams
## journal
## 1 Police quarterly
## 2 Administrative Theory & Praxis
## 3 Public Personnel Management
## 4 Administrative Theory & Praxis
## 5 Criminal Justice Review
## 6 Justice Quarterly
## 7 The Palgrave Handbook of Global Perspectives on Emotional Labor in Public …
## 8 Journal of Criminal Justice
## 9 International Journal of Law, Crime and Justice
## 10 Emotional Labour in Criminal Justice and Criminology
## 11 Emotional Labour in Criminal Justice and Criminology
## 12 Criminal Justice Policy Review
## 13 Policing: An International Journal
## 14 Annals of Emergency Dispatch & Response
## 15 Public Administration Review
## 16
## 17 Review of Policy Research
## 18 International Journal of Work Organisation and Emotion
## 19 The Palgrave Handbook of Global Perspectives on Emotional Labor in Public …
## 20 The Palgrave Handbook of Global Perspectives on Emotional Labor in Public …
## 21 Public Administration Review
## 22
## number cites year cid pubid
## 1 22 (1), 5-30 46 2019 8532835669277965898 RHpTSmoSYBkC
## 2 39 (4), 313-328 28 2017 11458448965364077389 ZeXyd9-uunAC
## 3 48 (3), 325-344 16 2019 3113275916335416875 BqipwSGYUEgC
## 4 40 (4), 304-319 9 2018 17350818719678078979 M3NEmzRMIkIC
## 5 44 (3), 386-405 7 2019 17636589692170586414 J_g5lzvAfSwC
## 6 37 (5), 869-899 6 2020 9895552701426227567 g5m5HwL7SMYC
## 7 4 2019 1546338871969866120 2P1L_qKh6hAC
## 8 64 (C), 1-1 3 2019 12823963095676900727 35N4QoGY0k4C
## 9 61, 100358 1 2020 13462011810362789692 HoB7MX3m0LUC
## 10 185 0 2020 <NA> yD5IFk8b50cC
## 11 185-195 0 2020 <NA> dfsIfKJdRG4C
## 12 31 (4), 479-499 0 2020 <NA> ns9cj8rnVeAC
## 13 0 2020 <NA> 3s1wT3WcHBgC
## 14 7 (3), 5-10 0 2020 <NA> zA6iFVUQeVQC
## 15 79 (5), 791-793 0 2019 <NA> lSLTfruPkqcC
## 16 0 2019 <NA> pqnbT2bcN3wC
## 17 36 (3), 296-317 0 2019 <NA> RGFaLdJalmkC
## 18 10 (1), 1-18 0 2019 <NA> u_35RYKgDlwC
## 19 0 2019 <NA> M05iB0D1s5AC
## 20 0 2019 <NA> ldfaerwXgEUC
## 21 0 NA <NA> a0OBvERweLwC
## 22 0 NA <NA> 4OULZ7Gr8RgC
# Get number of articles
get_num_articles(id)
## [1] 22
# Number of different journals published in
get_num_distinct_journals(id)
## [1] 16
# Retrieve year of oldest publication
get_oldest_article(id)
## [1] 2017
# Number of publications in "top" journals
get_num_top_journals(id)
## [1] 0
Need a little dose of imposter syndrome today? Dr. Hawking had 497 citations in his first career year. You can compare scholars based on their id
.
# Compare yourself and Stephen Hawking
ids <- c('g9lY5RUAAAAJ', 'qj74uXkAAAAJ')
# Get a data frame comparing the number of citations to their work in
# a given year
compare_scholars(ids)
## id year cites total name
## 1 g9lY5RUAAAAJ 2017 28 28 Ian T. Adams
## 2 g9lY5RUAAAAJ 2018 9 37 Ian T. Adams
## 3 g9lY5RUAAAAJ 2019 76 113 Ian T. Adams
## 4 g9lY5RUAAAAJ 2020 7 120 Ian T. Adams
## 5 g9lY5RUAAAAJ NA 0 120 Ian T. Adams
## 6 qj74uXkAAAAJ 1970 1991 1991 Stephen Hawking
## 7 qj74uXkAAAAJ 1971 1182 3173 Stephen Hawking
## 8 qj74uXkAAAAJ 1972 1393 4566 Stephen Hawking
## 9 qj74uXkAAAAJ 1973 16927 21493 Stephen Hawking
## 10 qj74uXkAAAAJ 1974 6809 28302 Stephen Hawking
## 11 qj74uXkAAAAJ 1976 6502 34804 Stephen Hawking
## 12 qj74uXkAAAAJ 1977 4804 39608 Stephen Hawking
## 13 qj74uXkAAAAJ 1982 2299 41907 Stephen Hawking
## 14 qj74uXkAAAAJ 1983 9915 51822 Stephen Hawking
## 15 qj74uXkAAAAJ 2009 7949 59771 Stephen Hawking
## 16 qj74uXkAAAAJ 2010 3538 63309 Stephen Hawking
# Compare their career trajectories, based on year of first citation
compare_scholar_careers(ids)
## id year cites career_year name
## 1 g9lY5RUAAAAJ 2018 5 0 Ian T. Adams
## 2 g9lY5RUAAAAJ 2019 40 1 Ian T. Adams
## 3 g9lY5RUAAAAJ 2020 73 2 Ian T. Adams
## 4 g9lY5RUAAAAJ 2021 1 3 Ian T. Adams
## 5 qj74uXkAAAAJ 1982 497 0 Stephen Hawking
## 6 qj74uXkAAAAJ 1983 608 1 Stephen Hawking
## 7 qj74uXkAAAAJ 1984 803 2 Stephen Hawking
## 8 qj74uXkAAAAJ 1985 837 3 Stephen Hawking
## 9 qj74uXkAAAAJ 1986 953 4 Stephen Hawking
## 10 qj74uXkAAAAJ 1987 836 5 Stephen Hawking
## 11 qj74uXkAAAAJ 1988 872 6 Stephen Hawking
## 12 qj74uXkAAAAJ 1989 1205 7 Stephen Hawking
## 13 qj74uXkAAAAJ 1990 1145 8 Stephen Hawking
## 14 qj74uXkAAAAJ 1991 1228 9 Stephen Hawking
## 15 qj74uXkAAAAJ 1992 1290 10 Stephen Hawking
## 16 qj74uXkAAAAJ 1993 1612 11 Stephen Hawking
## 17 qj74uXkAAAAJ 1994 1667 12 Stephen Hawking
## 18 qj74uXkAAAAJ 1995 1708 13 Stephen Hawking
## 19 qj74uXkAAAAJ 1996 1764 14 Stephen Hawking
## 20 qj74uXkAAAAJ 1997 1645 15 Stephen Hawking
## 21 qj74uXkAAAAJ 1998 2135 16 Stephen Hawking
## 22 qj74uXkAAAAJ 1999 2160 17 Stephen Hawking
## 23 qj74uXkAAAAJ 2000 2113 18 Stephen Hawking
## 24 qj74uXkAAAAJ 2001 2118 19 Stephen Hawking
## 25 qj74uXkAAAAJ 2002 2386 20 Stephen Hawking
## 26 qj74uXkAAAAJ 2003 2446 21 Stephen Hawking
## 27 qj74uXkAAAAJ 2004 2491 22 Stephen Hawking
## 28 qj74uXkAAAAJ 2005 2751 23 Stephen Hawking
## 29 qj74uXkAAAAJ 2006 2877 24 Stephen Hawking
## 30 qj74uXkAAAAJ 2007 3221 25 Stephen Hawking
## 31 qj74uXkAAAAJ 2008 3444 26 Stephen Hawking
## 32 qj74uXkAAAAJ 2009 3539 27 Stephen Hawking
## 33 qj74uXkAAAAJ 2010 3590 28 Stephen Hawking
## 34 qj74uXkAAAAJ 2011 4096 29 Stephen Hawking
## 35 qj74uXkAAAAJ 2012 4067 30 Stephen Hawking
## 36 qj74uXkAAAAJ 2013 4144 31 Stephen Hawking
## 37 qj74uXkAAAAJ 2014 4627 32 Stephen Hawking
## 38 qj74uXkAAAAJ 2015 4394 33 Stephen Hawking
## 39 qj74uXkAAAAJ 2016 4611 34 Stephen Hawking
## 40 qj74uXkAAAAJ 2017 5023 35 Stephen Hawking
## 41 qj74uXkAAAAJ 2018 5530 36 Stephen Hawking
## 42 qj74uXkAAAAJ 2019 5812 37 Stephen Hawking
## 43 qj74uXkAAAAJ 2020 6206 38 Stephen Hawking
## 44 qj74uXkAAAAJ 2021 96 39 Stephen Hawking
Want to feel bad about yourself (part 2)? Use the prediction algorithm from Acuna et al. to see where you’ll be when you finally land that adjunct position!
## Predict h-index of original method author, Daniel Acuna
id <- 'g9lY5RUAAAAJ'
predict <- predict_h_index(id)
plot(predict)